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ABSTRACT 

We present an explicit description of the cohomology spaces of any finitely 

generated virtually nilpotent group with (non-trivial) coefficients in a 

finite-dimensional real vector space. The input of the algorithm we de- 

velop to compute these cohomology spaces consists on the one hand of the 

module structure, and on the other hand of a polynomial crystallographic 

action of the group. Since any virtually nilpotent group admits such an 

action (which can be constructed algorithmically) our methods apply to 

all finitely generated virtually nilpotent groups. As an application of our 

results, we present explicit formulas for the dimension of the cohomology 

spaces of a virtually abelian group with coefficients in a finite-dimensional 

real vector space, equipped with a part icular kind of module structure.  

1. I n t r o d u c t i o n  

In [7] we used the correspondence between the cohomology of a group G and 

the de Rham cohomology of a K(G, 1)-manifold to describe a finite-dimensional 

cochain complex whose cohomology was exactly the group cohomology of G with 

trivial real coefficients, for any finitely generated virtually nilpotent group G. 

This result relied on two classical correspondences: first of all, the de Rham cor- 

respondence (see [8]) between the cohomology of differential forms on a K(G, 1)- 

manifold and the singular cohomology of this space; secondly, the Eilenberg-Mac 

Lane correspondence (see, for instance, [2]) between the singular cohomology 
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of a K(G, 1)-space and the group cohomology of G with trivial coefficients in 

an abelian group. A celebrated theorem of Nomizu (see [12]) ensured that a 

finite-dimensional subcomplex sufficed to describe this cohomology ring. 

In both of the above correspondences, the coefficient module needs to have 

a trivial G-module structure. When we now turn our attention to cohomol- 

ogy with coefficients in a finite-dimensional real vector space, we need to use 

a generalisation of these correspondences to cohomology with local coefficients 

and to cohomology of vector bundle-valued differential forms. Unfortunately, 

the Nomizu theorem does not have such a generalisation, so we need to tackle 

this problem differently. Nevertheless, it is interesting to study the connection 

between cohomology of vector bundle-valued differential forms, singular coho- 

mology with local coefficients and equivariant singular cohomology to have an 

idea of the type of object that would build up a cochain complex computing 

the cohomology of a group with coefficients in a finite-dimensional real vector 

space, equipped with ally module structure. 

Group cohomology as cohomology of vector bundle-valued differential forms. 
Let G be a group acting on a contractible, connected and locally arcwise 

connected topological space. In case the action of G is free and properly discon- 

tinuous, the singular homology chain complex C.(X) of X (see [11]) turns out 

to be a free resolution of Z as a trivial G-module. Therefore, the G-equivariant 

cohomology of X with coefficients in a G-module M is nothing but the group 

cohomology of G with coefficients in M, 

(1) E~.(X,M) = H*(G,M). 

For a trivial module M, the Eilenberg-Mac Lane correspondence states that  

the G-equivariant cohomology Eb(X, M) of X with coefficients in M is isomor- 

phic to the singular cohomology of the quotient space X/G with coefficients 

in M. To incorporate a non-trivial module structure, we need to replace this 

singular cohomology by cohomology with local coefficients. According to [14, 

Chapter VI, Theorem 3.4'], the above correspondence carries over to cohomol- 

ogy with local coefficients. The G-equivariant cohomology of X with coefficients 

in a G-module M turns out to be isomorphic to the cohomology of X/G with 

respect to the system of local coefficients M(.) arising from the G-action on M, 

(2) ES(X, M) ~- H*(X/G, M(.)). 

Now let X be a differentiable manifold, and suppose G acts on X by diffeo- 

morphisms. Then the quotient manifold X/G inherits a differentiable structure, 
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and the de Rham cohomology of differential forms on X/G proves to be isomor- 

phic to the singular cohomology of X/G with trivial real coefficients. When 

considering finite-dimensional real vector spaces ~k carrying a non-trivial G- 

module structure, we are led to the cohomology of vector bundle-valued forms 

on X/G. The G-module structure of ]~k gives rise to a vector bundle E with 

a fiat connection, thus determining a cochain complex of forms with values in 

this vector bundle. Since the classical de Rham theorem for a (para)compact 

quotient manifold X/G, describing the isomorphism between cohomology of dif- 

ferential forms on X/G and singular cohomology of X/G with trivial coefficients 

in R, generalises to this broader setting, we obtain an isomorphism between the 

cohomology of differential forms on X/G with values in E and the cohomology 

with respect to the corresponding system E~(.) of local coefficients, 

(3) U~eRham(X/G , E) ~ H?ocal(X/G, E'(.)). 

Putting together the isomorphisms (1), (2) and (3), we conclude that  the 

group cohomotogy of G with coefficients in a finite-dimensional real vector space 

R k carrying any module structure matches the cohomology of the complex of dif- 

ferential forms with values in the vector bundle E corresponding to the module 

structure of ]R k, 

(4) H*(G,]R k) TM H~enham(X/G,E ) . 

In the remainder of this introduction, we describe the complex of differential 

forms on X/G with values in the vector bundle associated to the G-module 

structure of R n algebraically and in an equivariant setting. This allows us 

to define, in analogy with the trivial real coefficient case, a finite-dimensional 

subcomplex whose cohomology turns out to be exactly the group cohomology 

of G with coefficients in ~k, in case G is torsion free, finitely generated and 

nilpotent and the IRk-module structure is unipotent. This result is accomplished 

in section 2. We then generalise to the case of arbitrary module structures for 

]~k in section 3, and to the case of virtually nilpotent groups in section 4. In the 

last section, we use this description of the cohomology of a virtually nilpotent 

group to draw up explicit formulas for the dimension of the cohomology spaces 

of a virtually abelian group with coefficients in ]~k equipped with a particular 

type of module structure. 

An algebraic description of the complex o/vector-bundle valued differential forms. 
Let G be a group acting cocompactly, freely and properly discontinuously on 

a contractible, connected and locally arcwise connected differentiable manifold 
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X via p: G --~ 7)(X), where / ) (X)  is the group of all diffeomorphisms of X. 
Suppose G acts on ~k via ~: G -~ GL(k, ~). Let 

a * ( x , R  k) 

be the vector space of all k-tuples of differential forms on X. A k-tuple 

t(wl,. . . ,wk) E ~*(X,R k) of differential forms on X is called 

(p(G), ~o(G))-invariant if 

(i 1) = 

k 

where p(g)* denotes pullback under the action of g, and the right-hand side 

is given by formal matrix multiplication. The vector space of (p(G), ~(G))- 
invariant k-tuples of differential p-forms we denote by 

~P(X, Rk)p(G),~(a). 

The layerwise differentiation 

d wk \ dwk ] 

turns the graded vector space ~*(X, ~k)p(G),~(G) into a cochain complex 

0 > ~o (X, ]~k)p(G),~(G) d ~1 (X, Rk) p(G)'~(G) d �9 ~ . . . .  

When computing the group cohomology of G using the singular homology 

resolution C.(X) of X as a free resolution, the isomorphism in (4) is induced 

by the k-fold integral 2- of a k-tuple of forms 

(5) 2- : C, (X)  ~ N k defined by 

k 
2- Wk (T) = " 

over non-degenerate singular cubes T: [0, 1]* --* X on X. 

An interesting subcomplex of ~* (]~n ]~k)p(a),v(a). 
Inspired by [7] we specify the manifold X and the type of action p, and thus 

restrict to groups allowing a so-called polynomial crystallographic action, and, 

in particular, to finitely generated virtually nilpotent groups. 
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Let n > 0. A polynomial diffeomorphism p: ~n __, Rn of R n is a bijective map 

such that  both p and its inverse p-1 can be expressed as polynomials. The group 

of polynomial diffeomorphisms is denoted by 7)(~n). An action p: G --+ :p(~n) 

of a group G on R n via polynomial diffeomorphisms is called p o l y n o m i a l  crys-  

t a l lograph ic  if it is both properly discontinuous and cocompact. Moreover, the 
action is of  b o u n d e d  degree  if there exists an integer M such that  the degrees 

of all maps in p(G) are bounded above by M. 

In [4] (see also [3]) it is shown that  any polycyclic-by-finite group, and hence 

any finitely generated virtually nilpotent group, admits a polynomial crystallo- 

graphic action of bounded degree. Moreover, this action is unique up to conjuga- 

tion inside 7)(R n) (see [1]) and can be constructed algorithmically, for instance, 

starting from a presentation of the group (see [6], [5] or again [4]). 

Let p: G --* 7)(R n) be a polynomial crystallographic action of G on ~'~, and 

~: G --* GL(k, R) a G-module structure for R k. In analogy with the main result 
of [7], we define the subcomplex 

~ , ( X ,  lCk) p(c)'v(G) 

of the complex ~*(X,I~k)P(G)'~(G) as the space of all of (p(G), ~(G))-invariant 

k-tuples of forms on ~n having polynomial coordinate functions. Using the 

fact that, for a polycyclic-by-finite group, any two polynomial crystallographic 

actions of bounded degree are polynomially conjugated (see [1]), it is easy to 

show that  this space does not depend on the choice of polynomial structure. 

For any finitely generated virtually nilpotent group G, we relate the cohomol- 

ogy of this restricted complex of tuples of differential forms to the cohomology of 
G with unipotent coefficients in R k, and, in doing so, gain some understanding 
about what this complex ft~,(X, Rk) p(a),~(a) looks like. 

2. C o h o m o l o g y  of  T -g roups  w i t h  u n i p o t e n t  coeff icients  

Let N be a T-group, that  is, a finitely generated torsion-free nilpotent group. 

Then lemma 1.1 in [9] implies that unipotent coefficient modules with a vec- 

tor space structure have a particular behaviour compared to general coefficient 

modules when considering cohomology (see section 3 for a more detailed dis- 

cussion of this observation). Moreover, the fact that a unipotent N-module 

structure of R k given by 7~: N --* GL(k, R) is upper triangular up to a change 

of basis, makes this setting extremely well fit for an inductive argument. With 
these ideas in mind we prove 
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THEOREM 2.1: Let p: N ~ 7a(R n) be a polynomial crystallographic action of 

a q--group N on R n, and ~: N --* GL(k, R) a unipotent N-module structure for 

R k. Then the cochain map 

Z: f~},(~n, Rk)p(t~),~(g) ~ Homze(C . (Rn) ,  Rk) 

induces an isomorphism on cohomology, 

g*(~*p(Rn,Rk) p(N)'~(N)) ~ H•(N R k) 

To establish this isomorphism, we first of all describe the inductive setup, con- 

sisting of the obvious decomposition of R k as an N-module,  and the equivalent 

result for the complex of tuples of forms, which requires some understanding of 

the way this complex is built up. We then use these ingredients to work out a 

proof of the theorem in section 2.2. 

2.1 A SHORT EXACT SEQUENCE OF COMPLEXES OF FORMS. Since the module 

structure 9 of R k is unipotent,  we may safely assume ~ ( N )  consists of upper 

triangular matrices, tha t  is, ~ (N)  C_ Tr 1 (k, R). Then the first component of ~k 

is an N-submodule,  say I ,  upon which N acts trivially. The induced module 

structure ~3: N -* Tr l (k  - 1 ,~)  of the quotient space V = ~ k / I  is defined by 

I 
1 
0 

= . 

o 

\ 

) 
for all n E N.  We end up with a short exact sequence of N-modules,  

(6) 0 �9 I �9 ~k �9 V > 0. 

We now describe the the corresponding result for invariant tuples of polyno- 

mial forms. For any 0 _< p < n, let 

be the inclusion of the first layer, and 

proj : ~,(ll~n,ll~k)p(N),~(~V ) --* ~(lI~n,ii~k_l)o(Nl,~(N) : W2 ~ 

k 
k 
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the projection on the last k - 1 components. Note that  ~ ( ] R  n, R) p(N)'triv is 

nothing but the space of p(N)-invariant polynomial forms on ]R n. Clearly, i is 

injective and Im(i) = Ker(proj). But there is more: 

THEOREM 2.2: The sequence 

0 ) ~ ' ~ ( ~ n ,  ]~)p(N),triv i >- ~-~*p(~n,~k)p(N),~a(N) 

proj > ~-~*p(]~n, ]~k-1)p(N),~(N) >0  

is exact. 

The surjectivity of proj is the only thing left to prove. This is readily checked 

by showing that 

dim ~,(]~n,  ]~k)p(N),~(N) = dim ~ ,  (~n, ]~)P(N)'triv +d im ~ ( R  n, ]~k-1)p(N),~(N) 

which is an immediate consequence of 

PROPOSITION 2.3: Let N be a T-group and p: N --* p (Rn)  a polynomial 

crystallographic action of N on ]~n. Suppose ~: N --~ Wrl(h,]~) gives l~ k a 

unipotent N-module structure. Then 

dim~*p(Rn,Rk) p(N)'~(N)= k ( ; )  

for any 0 < p < n. 

Proof: We proceed by induction on k. The case k = 1 was treated in [7, 

Theorem 3.5], so let k > 1 and assume the proposition is valid for all coefficient 

modules up to dimension k - 1. 

Let G be the Mal'cev completion of N, that  is, the unique simply con- 

nected and connected nilpotent Lie group containing N as a uniform lattice. 

As Tr l (k ,R)  is a simply connected nilpotent Lie group, there exists a unique 

extension ~5: G --~ T r l ( k , ~  ) of ~: N --, Trl(k,]~). According to theorem 3.2 

in [7], the polynomial crystallographic action p: N --~ P(IR n) extends also in a 

unique way to a simply transitive action ~: G --~ 7:'(]~ n) of G on ]~n, and the 

evaluation map 

Ev:  a -~ ~n: g ~ ~(g)(0) 

turns out to be a diffeomorphism. As G is nilpotent, the composition Ev o exp : G 

--~ ]R n is polynomial in the coordinates of the Lie algebra ~ of G. Moreover, 

lemma 2 from [1] shows that  its inverse is also polynomial. 
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It is now easy to see that  the mapping 

F: ~t ~ -~  T~ l (k ,  ~t): x -~  ~ ( E v - l ( x ) )  

is polynomial, as G and Trl (k, JR) are nilpotent. Moreover, the mapping 

D: •n __. p(Rn):  X --* f i (Ev- l (x))  

is also polynomial, in the sense that  the coefficients of the polynomials 

~(Ev -1 (x)) depend polynomially on x. 

The functions D and F allow us to build a subspace of (p(N),  ~(N))-invariant 

polynomial p-forms. Let p E N and c l , . . . ,  ck E AltP(R n) be alternating p-forms 

on R n. Then define 

(7) We1 ..... ek(x) ({ ( ' ) , . . . , { (P))  = F ( x ) .  (D(x ) , I{ (1 ) , . . . ,D(x ) , I{ (P ) ) .  

Evidently, we1 ..... e~ is polynomial because the functions F and D are. Moreover, 

let n E N and g E G such that  x = Ev(g). Then 

p(n)* (~Vc, ..... ck)(x)(~(D, . . .  , ~(P)) = we, ..... ck (p(ng)(O))(P(n)*~(1), . . .  , P(n)*~ (p)) 

= ~ ( ~ g )  (~(ng);-ip(n),~(~),..., ~(ng):~p(n),~ (~)) 

= ~(n )F(x )  (D(x ) , l~ (1 ) , . . . ,  D ( x ) , l ~  (p)) 

: ( ~ ( n ) C d c l  . . . . .  ek ( X ) ( ~ ( 1 ) ,  ' ' '  , ~ ( P ) )  

for any x E R n and any vectors ~(1),.. .  ,~(p) tangent to ]~n at x. Therefore, 

we1 ..... c~ is (p(N),  T(N))-invariant. Clearly, all k-tuples of p-forms defined as 

above form a vector space which is isomorphic to [AltP(Rn)] k, so its dimension 

is k(p). Summarizing, f~*p(Xn,Rk--1)p(N)'~(N) has dimension at least k(p). 

Since 

dim ~*p(R n, ]~k-1)p(N),~(N) = dim Ker(proj) + dimIm(proj) ,  

where Im(proj) C_ fl~,(Rn,IRk-1)P(N),~(N) and 

dim Ker(proj) -- dim flP(R n, R) p(N)'triv, 
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the induction hypothesis implies that  

dim~2*p(]~n,Rk-1)p(N) '~(N)<(p)  
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Together with the previous step, this proves the proposition. | 

Note that  the first part of the above proof gives us an explicit formula 
describing the space f~P(R n, ~k)p(N),~v(N), for any p ~ 0. 

2.2 A PROOF OF THEOREM 2.1. Once we have the short exact sequence 

(6) and the one from Theorem 2.2, tile proof of Theorem 2.1 consists of a 

straightforward induction argument on the dimension of the coefficient space 
R k using standard techniques. 

Proof of Theorem 2.1: If k = 1 then qo: N ~ Trl(1,R) is just the trivial 

representation, so in this case theorem 3.8 from [7] shows that  

Hiriv (N, R) ~- H* (fFp (R n, JR) p(N)'triv). 

Now suppose the theorem has been proven for coefficient modules of dinmnsion 

smaller than or equal to k - 1. 

The short exact sequence (6) of coefficient modules induces a long exact 
sequence in cohomology (see, for instance, [2, prop. 6.1]) 

, H p- 1 (HOmzN (C, (JR n), V)) 

> HP(HomzN(C.(]Rn), Rk)) 

> H p+l(uomzN (C, (An), I)) 

�9 HP(Homzg(C,(Xn) ,  I)) 

�9 HP(HomzN(C,(]~n), V)) 

> . . . .  

Analogously, the short exact sequence from Theorem 2.2 yields a long exact 
sequence in cohomology (see, for instance, [10, Ch. II, theorem 4.1]) 

�9 .. �9 HP-I(~*p(]~n,]~k-1)p(N),@(N)) 

> Hp(f~*p(Rn, ~k)p(N),cp(N)) 

) Hp+I (f2~(Rn, ]~)p(N),triv) 

The cochain map 

•: [~*p(~n ]~k)p(N),r --~ HOmZN (C. (R n, S k) 

> Hp(~2~,(]Rn, ]~)p(N),triv) 

> HP(f~o(R n, Rk--1)P(N)'~(N)) 

�9 . ~  
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defined by (5) now induces the vertical mappings in the following commutative 

diagram: 

H p- 1 (HomZN (C. (R~),V)) 

z~,-' l 
H v-1 (f~.p (R,~,Rk--1)o(N),~(N)) 

) HV(HomzN(C.(R"),I)) 

) Hp(~},(R'~,~)p(N), t~iv) 

~. HV(HomzN(C.(Rn),R~:)) 

> HP(n:,(R~,Rk)o(N),~(N)) 

�9 HP(HomzN(C.(R~),V)) 

�9 HV(~*p(R'~,Rk-1)o(lv),'~(l~)) 

) HP+I(HomzN(C.(R'~),I)) 

z~;+l l 
�9 HV+l (~.(R~,R)p(N).triv) 

where each of the morphims Z, Z! and I v  are defined as in (5), each one with 

respect to the appropriate N-module. 

Because of theorem 3.8 in [7], ~ /  is an isomorphism, and the induction hy- 

pothesis ensures that  ~v is an isomorphism as well. Applying the Five Lemma 

[10, Ch. 1, lemma 3.3] now shows that  the middle map Z p is also an isomor- 

phism. We repeat this for every p E {0 , . . . ,  n} to find the desired isomorphism 

of cohomology spaces. | 

We illustrate our construction by means of a simple example, disregarding 

the fact that  cohomology could also be computed differently in this easy case. 

A more serious example is given in Example 3.1. 

Example 2.1: Consider the group Z 2 = (el,e2> with its translation action 

p: Z 2 --. P(]R 2) given by 

( x l )  ( x l ' ~ - z l )  
p(zlel  + z2v2) x2 = x2 -~- Z2 

as a polynomial crystallographic action of Z 2 on R 2. Suppose the Z2-module 

structure of R 3 is given by 

 (el) = 1 ,  (e2) = 1 . 

0 0 

Then the extension/5 of p to the Mal'cev completion ]I~ 2 of  Z 2 is just 
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for any (Yl, Y2) C R 2. The extension ~5 of ~ to R 2 is defined by 

@(Yl, Y2) = 1 �9 
0 

Now let us compute the differential forms using formula (7). 

11 

0-~rms 

1-~rms 

2-~rms 

General form 

I 
/ C ~-XlC3N~ 

C2 ~- X2C3 / 
# 

\ C3 ,] 

ci,idxi + Cl,2dx2 A- Xl (c3,1dXl + c3,2dx2) 
c2,1dxl + c2,2dX2c3,1dXl4- ~-x2(c3'ldXlc3,2dx2 + c3,2dx2) ) 

/ cidxl A dx2 + xicadxl A dx2 
c2dx 1 A dx2 -t- x2c3dXl A dx2 ) \ c3dxl A dx2 

Differential 

c3dxl 

/ c3,2dxl A dx2 ~ 
t -C3,ldxlAdx2 t 

0 j 

0 

For the cohomology spaces we find 

H~ ~ 3 ) "  ]~ 2 , =  H 1 ( Z,2 R3 ~) :  ]~3, H2(Z2,  ~3 )~R.-- 

3. Cohomology of  T - g r o u p s  w i t h  gene ra l  coeff ic ients  

As suggested before, the unipotent module structures are in a sense the essen- 

tial ones when considering cohomology of T-groups. In this section we show 

that  the cohomology of a T-group with coefficients in a vector space with any 

module structure reduces to the cohomology of this group with coefficients in 

the maximal unipotent part of this module. Using this reduction, the coho- 

mology description of the preceding section also applies to cohomology with 

non-unipotent coefficients. 

Let N be any group. First of all, we show that  each finite-dimensional N- 

module contains a maximal unipotent submodule. Although this proposition is 

well-known and quite easy, we present it here with a complete proof, to illustrate 

the fact that  the determination of this maximal unipotent submodule uses an 

easy algorithm. A fairly standard argument then shows how, for any T-group, 

cohomology with coefficients in ]~k reduces to cohomology with coefficients in 
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the maximal unipotent submodule of ]Rk. As an example, we compute the 

cohomology of the free 2-step nilpotent group on 4 generators with coefficients 

in a 4-dimensional real vector space. 

PROPOSITION 3.1: Let N be a group acting on R k via ~: N --* GL(k,]R). Then 

]~k has a N-invariant subspace M such that 

(1) the action of N on M is unipotent, and 

(2) the induced action on ]~k/M has no non-trivial fixed points. 

Proof'. We prove this proposition by induction on k. If k = 1, then either 

is trivial, and M = R, or ~ isn't, but then the N-act ion has no non-trivial 

fixed points, and M = 0. Now suppose we know how to find such a maximal 

unipotent submodule in any N-module  with a real vector space structure of 

dimension smaller than  k, and consider an N-module  of dimension k. If the N-  

action has no non-trivial fixed points, then M -- 0. Otherwise, let v # 0 E R k 

be a fixed point. Then the subspace vct{v} spanned by v is an N-submodule,  

and by induction there exists a submodule 2~/of the quotient space Rk/vc t{v} ,  

equipped with the induced module structure, such that  the action of N on 

is unipotent and the induced action on ]~k-1/2VI has no non-trivial fixed points. 

Now M = {w C ]~k I w + vct{v} E 2~/} is a N-submodule with unipotent module 

structure, and the induced action on ]Rk/M = ]Rk-1//V/has no non-trivial fixed 

points. | 

THEOREM 3.2: Let N be a :T-group acting on •k via a morphism ~: N --* 

GL(k,]R). Suppose M is the maxima/  unipotent submodule o[ R k, with an 

N-action given by ~v: N --* GL(M).  Then 

H;(N,]~ k) = H ; u ( N , M  ). 

Proof: When taking cohomology with respect to the short exact sequence 

0 > M > xk  > R k / M  > 0 

we obtain the long exact sequence 

�9 .. -> g p-1 (N, R k / M )  -> HP(N, M)  -> HP(N, Rk) _> H p ( g ,  R k / M )  _>. . . .  

But by lemma 1.1 in [9], HP(N, R k / M )  = 0 for all p, because N acts on R k / M  

without non-trivial fixed points. Therefore, 

H ~ ( N , ~  k) ~- H P u ( N , M  ) 
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for any 0 _< p ~ n. | 

To describe the cohomology spaces of a :/--group with coefficients in a finite- 

dimensional real vector space equipped with any module structure, we just com- 

pute the maximal unipotent submodule and draw up the complex of invariant 

tuples of polynomial differential forms, as in section 2. 

Example  3.1: Let F2,4 be the free 4-generated 2-step nilpotent group 

F2,4 = (e l ,  e2, e3, e4, e5, e6, e7, e8, e9, elO[l[el,  e2] = e5, [el,  e3] = e6, 

[ e l ,  c4] = eT, [e2,  = c8 ,  

Then F2,4 has a polynomial crystallographic action p: F2,a --+ P (R  1~ given by 

( Xl +Ul  
X2 -I- U2 
X3 + U3 

p(e , . . = �9 elo ) x5 + u5 + x lu2  
x 6  + u6  ~- x l u 3  

x 0 x 7  + U7 Q- X lU4  

X 8 -~- U 8 -~- X2U 3 

~,xX: + Ug + X2U4 j 
-~- Ul0 -4- X3U 4 ] 

Define a module structure ~: F2,4 --* GL(4, ]~) by choosing (304!) 
2 - 1  0 1 - 2  

~9(el) "~- --2 2 1 2 '  ~(e2) = 0 5 ' 

4 - 4  0 0 - 6  (0101)  ( 13 0 0 ) 
0 1 0 0 1 1 0 

~(e3)~'~- --1 1 1 --1 , ~ ( e 4 ) =  0 --1 0 " 

2 --2 0 3 0 3 1 

Then the unipotent submodule has dimension 2, and the cohomology spaces 

of the group F2,4 with coefficients in ]R 4 (or equivalently, in its unipotent sub- 

module) are computed analogously to the methods described in Example 2.1�9 

For their dimensions we find 
HO(F2,4,  ~4 )  ~ R2, H 1 IF• ]I~4~ ~ ~11 2 4 ~ ]~46, r 2,4, } :  , H ~ ( F 2 , 4 , R  ) 
H~g(F2,4,]~4)3 @ ]1~122, H~o(F2,4,R~ 4) ~: ~[201, HS(F2,4,~[4) ~ R232, 
H ~  (F2 4, ]~4) ~"~ ~ 201 , ,  .t,~ r ~ Lr7 [F.2,4, ~43 r..~ ] ~ 1 2 2 ) :  , HS(F2 ,4 ,  ]~4) ,~ R46, 
H 9 ( F 2  4 , ~  , ]~4) ~ R i o  H l O / F  ' R4~ ~ ~2  k 2,4, } ~ ~ - 
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4. C o h o m o l o g y  o f  v i r t u a l l y  n i l p o t e n t  g r o u p s  

In this section we put to work the description we gave of the cohomology of a 

T-group with coefficients in R k, and show how these techniques can be extended 

to compute the cohomology of a finite extension of a T-group. It is well known 

(see, for instance, [13]) that  any finitely generated virtually nilpotent group has 

a T-subgroup of finite index. 

As a first step, we sketch the connection between the cohomology of a group 

and of a subgroup of finite index, under rather mild conditions on the coefficient 

module. 

PROPOSITION 4.1: Let E be a group and N a finite index subgroup of E. 

Suppose A is an E-module uniquely divisible by the index of N in E. Then 

H*(E,A) ~ H*(N,A) E/N, 

where the E/N-action on H*(N,  A) is induced by conjugation in E. 

For a completely worked-out proof of this proposition we refer to [7]. 

We now use this relation to give a description of the cohomology spaces of 

a virtually nilpotent group. Let E be a finitely generated virtually nilpotent 

group, N a T-subgroup of finite index, and suppose ~: E --* GL(k, R) gives 

~k an E-module structure. According to the above proposition, we need to 

understand the action of the finite quotient E / N  (or, equivalently, of E itself) 

on the cohomology of N. Of course, this cohomology we would like to compute 

as the cohomology of the complex 

~*p(Rn, ]~k)p( N),~o( N) 

of invariant k-tuples of polynomial forms on R n, where p: N -* 7~(R n) is a 

polynomial crystallographic action of N on R n. To do this we first of all need to 

restrict to the maximal unipotent N-submodule M of R k. The fact that  M is 

also an Eosubmodule, thus ensuring that  the E/N-action on the cohomology of 

N with coefficients in R k carries over to the cohomology of N with coefficients 

in M, is ensured by 

LEMMA 4.2 (with notation as above): The maximal unipotent N-submodule 

M ofI~ k is an E-submodule. 

Proof'. The proof of Proposition 3.1 shows the iterative build-up of M, 

0 C M (1) C M (2) C . . .  C M (r) = M, 
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where M( i ) / M  (i-l) is the space of fixed points under the induced action of N 

on Rk/M(~-1). We show M is an E-module  by induction on r. 

If  r = 1 then M is just the space of fixpoints under the action of N,  so, for 

any e E E,  v E M and n E N,  

n ( % )  = ~(e- ln~)  v = % 

as N is normal in E. Therefore ev is again fixed under the action of N.  

Now suppose M (r-l)  is an E-module. Then ]Rk/M (r- l )  is, and analogously 

to the case r = 1 we can show that  M ( r ) / M  (r-l) is an E-module,  thus M (r) is 

as well. | 

To translate the E-action on cohomology to an action of E on this partic- 

ular complex of tuples of forms, we first of all need to extend the polynomial 

crystallographic action p of N on N n to an action of E on N n. According to 

[7,Prop. 4.2], such an extension ~: E ~ P ( R  n) always exists, and is uniquely de- 

termined. We then translate the action induced by conjugation inside E,  which 

is canonically defined on any projective resolution of Z as a trivial N-module  

with an E-module structure (see, for instance, [2]), to an action on the complex 

of (p(N), ~o(N)-invariant. The result of this translation, which is conducted 

along the lines of the translation of this same action in the case k = 1 and 

~(N)  = {1} in [7], is given in 

PROPOSITION 4.3 (with notation as above): Let 

03 = t (021 . . .  02k ) E ~*p(~n ,~k )p (N) , r  

The action of an e E E on w is given by 

( / ) (e- ' )*c~ / 

~ w  = ~ ( e ) .  " . 

\ / 

Computing the cohomology of a virtually nilpotent group E now comes down 

to computing the invariants in the cohomology of a normal T-subgroup of finite 

index under the action described in the above proposition. 

THEOREM 4.4: Let E be a finitely generated virtually nilpotent group with a 

polynomial crystM1ographic action ~: E --* 7)(]~n), and N a normal T-subgroup 

of finite index. Let N k be an E-module via ~: E -* G L( k, ~ ) and M its maximal 

unipotent N-submodule with N-action given by ~u: N -* Trl(k,]~). Then 

H~(E, N k) ~- H* [ (a~(R n , M) ~(E)'~~ (E))]. 
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In this theorem the E/N-ac t ion  is pulled into the cohomology functor, thus 

computing invariants before taking cohomology. This is indeed just a concise 

form for the space of the invariants in the cohomology of N under the action of 

the finite group E / N ,  as stated in 

LEMMA 4.5: Let F be a finite group acting on a vector space V over a field 

that is uniquely divisible by the order of  F.  I f  W is an F-invariant subspace of  

V,  then 

vF/w ~ (V /w:  

The proof of this lemma, which consists of an easy cohomological argument, 

can be found in [7]. 

Example 4.1 (Example 3.1 continued): Consider any extension (e.g. the semi- 

direct product) 

1 > F2,4 > E > Z 2 O Z 2  > 1 

of the free 4-generated 2-step nilpotent group F2,4 by the group 

Z2 ~ Z 2  = (f l ,  f2l f i r2  = f 2 f l , f  2 = f2 = 1), 

where the conjugation action inside E is determined by 

f l e l  = e2fl ,  f ie2 = exf l ,  f ie3 = e3fl ,  f ie4 = e4fl 

and 

f2el : elf2,  f2e2 = e2fl ,  f2e3 = e4f2, 

Define a module structure qo: E ~ R 4 by 

f 2 e 4  = e 3 f 2 .  

- 1  
2 

 (el) = - 2  

4 

1 0 
0 1 
o o 
0 0 

qo(fl) : ( ~ !  

20 ) (3-20 
- 1  0 - 2  3 0 
2 1 , ~ ( e 2 ) =  2 - 2  1 

- 4  0 - 4  4 0 

- 2  1 0 - 1  
5 ' (fl(e4) = 0 1 2 

- 6  0 0 - 2  

- 1  0 ~(f2) = 2 1 2 
2 1 ' - 4  0 - 3  

- 4  0 6 0 6 

4) 
2 

- - 4  " 

7 
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Using the computations from Example 3.1 we work out the cohomology of E 

with coefficients in ]R 4. The dimensions of the cohomology spaces are given by 

H~ (E, ]~ 4) ~ 0, H1 (E, ]R 4) TM 0, H2(E,  R 4) TM l~ 4, 
Ha(E,]~4) ___ Rio, H4(E,  R4) ~ ~16, H5(E ,~4)  ~ ]1~19, 

Hf(E,]~4) _~ R21, H7(E,  R4) ~ ~16, HS(E,]R4) ~ ~6, 
H9(E,  ]~ 4) ~- R 2, HI~  R 4) ~ R. 

5. C o h o m o l o g y  o f  v i r t u a l l y  abe l i an  g r o u p s  

Let E be a finite extension of the free abelian group Z ~ on n generators. In this 

section we give an explicit formula for the dimension of the cohomology spaces 

of E with coefficients in a finite-dimensionM real vector space ~k carrying a 

particular type of E-module structure. This formula generalises the formula 

for the Betti numbers of a virtually abelian group as developed in [7] to more 

general coefficient modules. 

Let us first of all describe a polynomial crystallographic action of E on ]R n. 

The extension 

0 �9 Z '~ > E > F = E / Z  n > 0 

determines an action r F --* GL(k, Z) of F on Z n by conjugation inside E.  Let 

m: F • F --* Z n be the cocycle corresponding to the extension. Considered as 

a mapping from F • F to ]R n, m is a cocycle as well. But H2(F,]R n) is triviM 

for F is finite and R n is uniquely divisible by the index of F,  so m is actually a 

coboundary. Let A: F -~ ]R n be a mapping such that (iX = m, that  is, 

~A(f, f ' )  = A(f )  d- r  - X( f  f ' )  = re( f ,  f ' )  

for all f ,  f '  E F.  

THEOREM 5.1 (with notation as introduced above): The mapping p: E = 

Zn • F --+ Aft(n, ]~) given by 

/ 

p(z, f )  = (.  

0 \ 

is an alTne crystallographic action. 

r  z + A(f) / 

/ . . .  0 1 

For a proof of this theorem we refer to [7]. 

We need some extra concepts and definitions to state a formula for the dimen- 

sion of H*(E,  IRk). Let n ,p  C I~ and p < n r 0. Then S(p, n - p )  is the set of all 
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(p, n -  p)-shuffies, where a (p, n -p)-shuff ie  is a permutation a of {1 ,2 , . . .  ,n} 

with 

a ( 1 ) < a ( 2 ) < . - - < a ( p )  and a ( p + l ) < a ( p + 2 ) < . . . < a ( n ) .  

Now let R be any commutative ring and A = (ai,j) E R nxn a square n- 

dimensional matrix over R. Then, for every couple of (p, n - p)-shuffles (a, T), 

we set 

A(a,~) = det 

aa(1)r(1) aa(1)r(2) --- aa(1)r(p)) 
aa(2)r(1), aa(2)~-(2). "...'" aa(2)T(p). �9 

\ aa(p)r(1) aa(p)r(2) �9 .. aa(p)T(p) 
Listing all (p, n - p)-shuffies as 

(n) 
O'1~O'2~... ,O" c with c = , 

P 

we define 
[ A(~1,~1) A(~l,a2) "'" A(al,ar ~ 

A(p) = I A(a2'al) A(a2,a~) .. .  A(a2,ac) 

! �9 . . .  " 

\ A(a~,ol) A(~,~2) . . .  A(~c,~c) j 

PROPOSITION 5.2: Let E be a finitely generated virtually abelian group with 
a rank n abelian normal subgroup of fnite index. Suppose the conjugation 
action of F = E / Z  n on Z n is given by r F ~ GL(n,Z) ,  and the module 
structure ~: E --~ GL(k,•) is such that ~(Z '~) = {1}. Let F be generated by 
al ,  a 2 , . . . ,  at .  Then the dimension of HP(E, R k) is given by 

( ~(al ) l , l r  (p) . . .  ~(al) l ,kr (p) ) 

k \ ~ /  - Rank ( : /  i "'. 

. . .  

. . .  

The matrix of which we take the rank in this proposition is obtained by juxta- 

position of the matrices in the formula; the matrix II is the identity matrix of 

appropriate dimension. The proof of this proposition uses the lemma below. 

Proof of the lemma is left to the reader. 
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LEMMA 5.3 (with no ta t i on  as above):  Let  a E S(p,  n - p) and wri te  dxa for 

dxa(1) A . . .  A dxo(p). Then  

p(e)*(dxa) = E [P(e-1)*](a,r) dx r  
vC~q(p,n-p) 

for any e E E .  Consequently,  for any differential p-[orm 

wadxa 
aC,S(p,n--p) 

on ]~n and any e E E we have 

rE~q(p,n--p) gCS(p,n--p) 
Proof  o f  Proposit ion 5.2: Let  us t ake  the  affine c rys ta l lograph ic  ac t ion  p: E --~ 

A f t ( n , R )  from Theo rem 5.1. Then  p maps  Z n to  t r ans la t ions  of ~n .  As ~ is 

t r iv ia l  on Z n, any Zn- invar ian t  k - tup le  of po lynomia l  p-forms w -- t(wl . . .  wk) 

consists of k cons tan t  p-forms 

02 i 

on l~ n. 

E c(i)dx ~ 
aeS(p,n--p) 

We now de te rmine  the  F - i n v a r i a n t  k - tup les  of forms. Clearly,  an w t h a t  is 

invar iant  under  the  ac t ion  of a set of genera tors  {a l ,  a2, �9 �9 �9 ar } for F is invar iant  

under  the  ac t ion  of any  e lement  of F .  Let  us have a look at  the  ac t ion  of an  ai .  

Choose an ai  C E such t ha t  ~ i N  = ai .  Then  

( p(~- 1) %dl ) 

(8) a'w : ~P(ai) " " 

and, for any j C {i,..., k}, we know from Lemma 5.3 that 

P(ai-1)*Wi : E dx~-[ E c(i)~b(a~l)(a,T)] 
~-E~q(p,n-p) aE~q(p,n-p) 

___ (dx,  . . .  �9 . 

Inser t ing  this  resul t  in (8) and  sub t r ac t i ng  w again  yields the  des i red  resul t .  
| 
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