ISRAEL JOURNAL OF MATHEMATICS 154 (2006), 1-20

COHOMOLOGY OF VIRTUALLY NILPOTENT GROUPS
WITH COEFFICIENTS IN R*

BY
KAREL DEKIMPE AND HANNES POUSEELE*

Katholieke Universiteit Leuven, Campus Kortrijk
B-8500 Kortrigk, Belgium
e-mail: karel. dekimpe@kuleuven-kortrijk.be, hannes.pouseele @kuleuven-kortrijk.be

ABSTRACT

We present an explicit description of the cohomology spaces of any finitely
generated virtually nilpotent group with (non-trivial) coefficients in a
finite-dimensional real vector space. The input of the algorithm we de-
velop to compute these cohomology spaces consists on the one hand of the
module structure, and on the other hand of a polynomial crystallographic
action of the group. Since any virtually nilpotent group admits such an
action (which can be constructed algorithmically) our methods apply to
all finitely generated virtually nilpotent groups. As an application of our
results, we present explicit formulas for the dimension of the cohomology
spaces of a virtually abelian group with coefficients in a finite-dimensional
real vector space, equipped with a particular kind of module structure.

1. Introduction

In [7] we used the correspondence between the cohomology of a group G and
the de Rham cohomology of a K (G, 1)-manifold to describe a finite-dimensional
cochain complex whose cohomology was exactly the group cohomology of G with
trivial real coefficients, for any finitely generated virtually nilpotent group G.
This result relied on two classical correspondences: first of all, the de Rham cor-
respondence (see [8]) between the cohomology of differential forms on a K(G, 1)-
manifold and the singular cohomology of this space; secondly, the Eilenberg—Mac
Lane correspondence (see, for instance, [2]) between the singular cohomology
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of a K(G,1)-space and the group cohomology of G with trivial coefficients in
an abelian group. A celebrated theorem of Nomizu (see [12]) ensured that a
finite-dimensional subcomplex sufficed to describe this cohomology ring.

In both of the above correspondences, the coefficient module needs to have
a trivial G-module structure. When we now turn our attention to cohomol-
ogy with coefficients in a finite-dimensional real vector space, we need to use
a generalisation of these correspondences to cohomology with local coefficients
and to cohomology of vector bundle-valued differential forms. Unfortunately,
the Nomizu theorem does not have such a generalisation, so we need to tackle
this problem differently. Nevertheless, it is interesting to study the connection
between cohomology of vector bundle-valued differential forms, singular coho-
mology with local coefficients and equivariant singular cohomology to have an
idea of the type of object that would build up a cochain complex computing
the cohomology of a group with coefficients in a finite-dimensional real vector
space, equipped with any module structure.

Group cohomology as cohomology of vector bundle-valued differential forms.

Let G be a group acting on a contractible, connected and locally arcwise
connected topological space. In case the action of G is free and properly discon-
tinuous, the singular homology chain complex C,(X) of X (see [11]) turns out
to be a free resolution of Z as a trivial G-module. Therefore, the G-equivariant
cohomology of X with coefficients in a G-module M is nothing but the group
cohomology of G with coefficients in M,

(1) Ex(X,M) = H"(G,M).

For a trivial module M, the Eilenberg-Mac Lane correspondence states that
the G-equivariant cohomology EZ (X, M) of X with coefficients in M is isomor-
phic to the singular cohomology of the quotient space X/G with coefficients
in M. To incorporate a non-trivial module structure, we need to replace this
singular cohomology by cohomology with local coefficients. According to (14,
Chapter VI, Theorem 3.4*], the above correspondence carries over to cohomol-
ogy with local coefficients. The G-equivariant cohomology of X with coefficients
in a G-module M turns out to be isomorphic to the cohomology of X/G with
respect to the system of local coefficients M (-} arising from the G-action on M,

(2) EG(X, M) = H*(X/G,M(")).

Now let X be a differentiable manifold, and suppose G acts on X by diffeo-
morphisms. Then the quotient manifold X/G inherits a differentiable structure,
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and the de Rham cohomology of differential forms on X/G proves to be isomor-
phic to the singular cohomology of X/G with trivial real coefficients. When
considering finite-dimensional real vector spaces R¥ carrying a non-trivial G-
module structure, we are led to the cohomology of vector bundle-valued forms
on X/G. The G-module structure of R* gives rise to a vector bundle E with
a flat connection, thus determining a cochain complex of forms with values in
this vector bundle. Since the classical de Rham theorem for a (para)compact
quotient manifold X/G, describing the isomorphism between cohomology of dif-
ferential forms on X /G and singular cohomology of X/G with trivial coefficients
in R, generalises to this broader setting, we obtain an isomorphism between the
cohomology of differential forms on X/G with values in E and the cohomology
with respect to the corresponding system E’(-) of local coefficients,

(3) H:ikeRham(X/G’ E) = Hlt)cal(X/G’ El())

Putting together the isomorphisms (1), (2) and (3), we conclude that the
group cohomology of G with coefficients in a finite-dimensional real vector space
R* carrying any module structure matches the cohomology of the complex of dif-
ferential forms with values in the vector bundle E corresponding to the module
structure of R¥,

4) H*(G,R*) & Hj, pham (X/G, E).

In the remainder of this introduction, we describe the complex of differential
forms on X/G with values in the vector bundle associated to the G-module
structure of R™ algebraically and in an equivariant setting. This allows us
to define, in analogy with the trivial real coefficient case, a finite-dimensional
subcomplex whose cohomology turns out to be exactly the group cohomology
of G with coefficients in R¥, in case G is torsion free, finitely generated and
nilpotent and the R*-module structure is unipotent. This result is accomplished
in section 2. We then generalise to the case of arbitrary module structures for
R¥ in section 3, and to the case of virtually nilpotent groups in section 4. In the
last section, we use this description of the cohomology of a virtually nilpotent
group to draw up explicit formulas for the dimension of the cohomology spaces
of a virtually abelian group with coefficients in R¥ equipped with a particular
type of module structure.

An algebraic description of the complez of vectorbundle valued differential forms.
Let G be a group acting cocompactly, freely and properly discontinuously on
a contractible, connected and locally arcwise connected differentiable manifold
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X via p: G — D(X), where D(X) is the group of all diffeomorphisms of X.
Suppose G acts on R* via p: G — GL(k,R). Let

Q*(X,RF)

be the vector space of all k-tuples of differential forms on X. A k-tuple
Hwi,...,wx) €  QF(X,R¥) of differential forms on X is called

(p(@), 0(G))-invariant if
p(g™!) wr wy
: =<p(g)( E

p(g™ 1) *w wk

where p(g)* denotes pullback under the action of g, and the right-hand side
is given by formal matrix multiplication. The vector space of (p(G),¢(G))-
invariant k-tuples of differential p-forms we denote by

OP(X, RF)P(G)#(G),

(1))

turns the graded vector space Q*(X,R¥)?(G):%(G) into a cochain complex

The layerwise differentiation

0 —> QO(X, RF)P(@0(@) L 1 x RF)PE)9(G) s ...

When computing the group cohomology of G using the singular homology
resolution C,(X) of X as a free resolution, the isomorphism in (4) is induced
by the k-fold integral T of a k-tuple of forms

w1 w1 fT w1
(6) I| : |:CuX)—R* definedby I| : |(T)= :
W W Jrwe
over non-degenerate singular cubes T: [0,1]* — X on X.
An interesting subcomplez of Q*(R™, R¥)P(G)#(G),
Inspired by [7] we specify the manifold X and the type of action p, and thus

restrict to groups allowing a so-called polynomial crystallographic action, and,
in particular, to finitely generated virtually nilpotent groups.
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Let n > 0. A polynomial diffeomorphism p: R™ — R™ of R" is a bijective map

! can be expressed as polynomials. The group

such that both p and its inverse p~
of polynomial diffeomorphisms is denoted by P(R™). An action p: G — P(R")
of a group G on R via polynomial diffeomorphisms is called polynomial crys-
tallographic if it is both properly discontinuous and cocompact. Moreover, the
action is of bounded degree if there exists an integer M such that the degrees
of all maps in p(G) are bounded above by M.

In [4] (see also [3]) it is shown that any polycyclic-by-finite group, and hence
any finitely generated virtually nilpotent group, admits a polynomial crystallo-
graphic action of bounded degree. Moreover, this action is unique up to conjuga-
tion inside P(R™) (see {1}) and can be constructed algorithmically, for instance,
starting from a presentation of the group (see [6], [5] or again [4]).

Let p: G — P{R™} be a polynomial crystallographic action of G on R®, and
¢: G — GL(k,R) a G-module structure for R¥. In analogy with the main result
of [7], we define the subcomplex

Q6(X, Rk)p(G)m(G)

of the complex *(X, R¥)P(3#(G) a5 the space of all of (p(G), ¢(G))-invariant
k-tuples of forms on R™ having polynomial coordinate functions. Using the
fact that, for a polycyclic-by-finite group, any two polynomial crystallographic
actions of bounded degree are polynomially conjugated (see [1]), it is easy to
show that this space does not depend on the choice of polynomial structure.
For any finitely generated virtually nilpotent group G, we relate the cohomol-
ogy of this restricted complex of tuples of differential forms to the cohomology of

G with unipotent coefficients in R¥, and, in doing so, gain some understanding
about what this complex Q3 (X,RF)?(G):¢(G) |ooks like.

2. Cohomology of 7T-groups with unipotent coefficients

Let N be a T-group, that is, a finitely generated torsion-free nilpotent group.
Then lemma 1.1 in [9] implies that unipotent coefficient modules with a vec-
tor space structure have a particular behaviour compared to general coefficient
modules when considering cohomology (see section 3 for a more detailed dis-
cussion of this observation). Moreover, the fact that a unipotent N-module
structure of R* given by ¢: N — GL(k,R) is upper triangular up to a change
of basis, makes this setting extremely well fit for an inductive argument. With
these ideas in mind we prove
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THEOREM 2.1: Let p: N — P(R") be a polynomial crystallographic action of
aT-group N on R®, and p: N — GL{k,R) a unipotent N-module structure for
Rk. Then the cochain map

T: Q6(R", RF)PM#N) _, Homge(C, (R™), RF)
induces an isomorphism on cohomology,
H*(5(R", RF)PM#(N)) o g (N, RF).

To establish this isomorphism, we first of all describe the inductive setup, con-
sisting of the obvious decomposition of RF as an N-module, and the equivalent
result for the complex of tuples of forms, which requires some understanding of
the way this complex is built up. We then use these ingredients to work out a
proof of the theorem in section 2.2.

2.1 A SHORT EXACT SEQUENCE OF COMPLEXES OF FORMS. Since the module
structure ¢ of R¥ is unipotent, we may safely assume (N} consists of upper
triangular matrices, that is, (N) C Try(k,R). Then the first component of R¥
is an N-submodule, say I, upon which N acts trivially. The induced module
structure @: N — Tr;(k — 1,R) of the quotient space V = R¥/I is defined by

Llx ... =

p(n) = ‘ ()
0

for all n € N. We end up with a short exact sequence of N-modules,

(6) 0 I R 1%4 0.

We now describe the the corresponding result for invariant tuples of polyno-
mial forms. For any 0 < p < n, let

w
i: QB(R™, RPN _, P (R RE)P(N 2N, ‘?
0
be the inclusion of the first layer, and
proj: OB, (R", R¥)P(Ne (V) _, o (R™ RE-1)PIV)5IN),; :2 o
Wk

Wk
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the projection on the last k — 1 components. Note that Q%(R™,R)?(N)tiv jg
nothing but the space of p(N)-invariant polynomial forms on R™. Clearly, ¢ is
injective and Im(¢) = Ker(proj). But there is more:

THEOREM 2.2: The sequence

0 QO (R™, RPN v _t o Q5 (R, RF)P(N) 2 (V)

proj Q;(Rn’ Rk—»l)p(N),@(N) —>0

is exact.

The surjectivity of proj is the only thing left to prove. This is readily checked
by showing that

dim Qp(R™, R¥)#M-#) = dim O, (R, R)? VY 1 dim Q (R™, RF—1)p N4V,

which is an immediate consequence of

PROPOSITION 2.3: Let N be a T-group and p: N — P(R™) a polynomial
crystallographic action of N on R"™. Suppose ¢: N — Tr1(k,R) gives R* a
unipotent N-module structure. Then

dim Q5 (R™, RF)P (V)¢ (V) — k(”)
p

forany 0 <p<n.

Proof: 'We proceed by induction on k. The case k = 1 was treated in (7,
Theorem 3.5}, so let k£ > 1 and assume the proposition is valid for all coefficient
modules up to dimension k — 1.

Let G be the Mal'cev completion of N, that is, the unique simply con-
nected and connected nilpotent Lie group containing N as a uniform lattice.
As Tri(k,R) is a simply connected nilpotent Lie group, there exists a unique
extension ¢: G — Tri(k,R) of ¢: N — Tri(k,R). According to theorem 3.2
in [7], the polynomial crystallographic action p: N — P(R™) extends also in a
unique way to a simply transitive action p: G — P(R") of G on R", and the
evaluation map

Ev: G — R" g~ j(g)(0)

turns out to be a diffeomorphism. As G is nilpotent, the composition Evoexp: G
— R™ is polynomial in the coordinates of the Lie algebra G of G. Moreover,
lemma 2 from (1] shows that its inverse is also polynomial.
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It is now easy to see that the mapping
F:R"™ - Tr (k,R): z — @(Ev™}(z))
is polynomial, as G and Tr (k,R) are nilpotent. Moreover, the mapping
D:R™ - P(R™): z — p(Ev(z))

is also polynomial, in the sense that the coefficients of the polynomials
p(Ev™1(z)) depend polynomially on z.

The functions D and F allow us to build a subspace of (p(N), ¢(N))-invariant
polynomial p-forms. Let p € Nand ¢y,...,c, € At (R™) be alternating p-forms

on R™. Then define

C1

(1) Weryen (@)EW, ... EP)) = F(z)- ( : ) (D(@)7'eW,..., D(z)1EP).

Ck

Evidently, we, ... c, is polynomial because the functions F' and D are. Moreover,
let n € N and g € G such that z = Ev(g). Then

p(n)* (wey,er e @)ED, .. €P) = wey, i ((n9)(0))(p(n)EW, . .., p(n)EP)

= $(ng) ( : ) (A(ng)7 p(n)EM, ..., B(ng) " p(n).£P))
Ck

= p(n)F(z) ( : ) (D(z)71eW,. .., D(z);1¢®)

Ck
= P(n)wey,....cr (@) (ED, ..., €P)

for any x € R™ and any vectors €M .., &P tangent to R” at z. Therefore,
Wey,....cr 18 (p(N), o(N))-invariant. Clearly, all k-tuples of p-forms defined as
above form a vector space which is isomorphic to [Alt?(R")]*, so its dimension
is k(’;). Summarizing, Q%(R™, R¥~1)?(N):#(N) hag dimension at least k(Z).

Since
dim Q5 (R", Rk_l)p(N)"ﬁ(N) = dim Ker(proj) + dim Im(proj),
where Im(proj) C Q5 (R, RF—1)P(N).6(N) and

dim Ker(proj) = dim Q% (R", R)p(N),triv’
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the induction hypothesis implies that

dim Q% (R™, RF~1)P(N)-0(N) < (n> + (k-1 (") = k(”)
p( ) <\p (k—1) » p

Together with the previous step, this proves the proposition. |

Note that the first part of the above proof gives us an explicit formula
describing the space Q5 (R™, R¥)P(V)#N) for any p > 0.

2.2 A PROOF OF THEOREM 2.1. Once we have the short exact sequence
(6) and the one from Theorem 2.2, the proof of Theorem 2.1 consists of a
straightforward induction argument on the dimension of the coefficient space
R¥ using standard techniques.

Proof of Theorem 2.1: If k = 1 then v: N — Tr;(1,R) is just the trivial
representation, so in this case theorem 3.8 from [7] shows that

Ht*riv(Na R) = H*(Q*P(]R",R)P(N),triV).

Now suppose the theorem has been proven for coefficient modules of dimension
smaller than or equal to k& — 1.

The short exact sequence (6) of coefficient modules induces a long exact
sequence in cohomology (see, for instance, |2, prop. 6.1])

-+« — HP~Y(Homgzy (C4(R"),V)) —> HP(Homzy (C«(R"), 1))
— HP(Homgzn (C(R™), Rk)) — HP(Homgzy (C«(R™), V)
—> HP*!(Homgyn (Cs(R"), I)) — -+

Analogously, the short exact sequence from Theorem 2.2 yields a long exact
sequence in cohomology (see, for instance, [10, Ch. II, theorem 4.1])

o — HPL(Q(R™, RE-1)PN@(N)) > fp(Qn(R™, R)P(N) vy
—— HP(Q%(R", RF)PN 0 (N)) —— HP(Q%(R™, RF~1)2(N).6(N))
— Hp“(g};(Rn, R)p(N),triV) — .,
The cochain map

T: Uu(R™, RF)PN)@(N) , Homygy (C, (R®, R¥)
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defined by (5) now induces the vertical mappings in the following commutative
diagram:

HP~Y(Homzn (C, (R™),V)) —> H?(Homgzy (C. (R™),I)) —> HP(Homgzy (C.(R"),R*))

- T

HP—I(Q;)(Rn,Rk—l)P(N),é(N)) —_— H”(Q;(R",R)”(N)‘“i") —_— HP(Q*P(R"’]R")P(N):‘P(N))

——> HP(Homzn{C. (R™),V)) ——> H?+!(Homzn (C. (R"),]))

7% T 7+t I

—_— HP(Q;,(R"’R“‘I)P(N):\?’(N)) [ Hpﬂ(g;)(]kn,R)p(N),triV)

where each of the morphims 7, Z; and Zy are defined as in (5), each one with
respect to the appropriate N-module.

Because of theorem 3.8 in [7], Z¥ is an isomorphism, and the induction hy-
pothesis ensures that I}, is an isomorphism as well. Applying the Five Lemma
[10, Ch. 1, lemma 3.3] now shows that the middle map Z? is also an isomor-
phism. We repeat this for every p € {0,...,n} to find the desired isomorphism
of cohomology spaces. |

We illustrate our construction by means of a simple example, disregarding
the fact that cohomology could also be computed differently in this easy case.
A more serious example is given in Example 3.1.

Example 2.1: Consider the group Z? = (e;,es) with its translation action
p: Z% — P(R?) given by

T Ty + 2
p(z1e1 + z2€3) (z;) = (x;-i-z;)

as a polynomial crystallographic action of Z? on R2. Suppose the Z?-module
structure of R3 is given by

o= o

1 1 1 00
pler)=10 1 0], ¢ple)={0 1 1
0 1 0 01

Then the extension j of p to the Mal’cev completion R? of Z? is just

- x T +
Pl v2) (z;) - (m;-kz:)
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for any (y1,y2) € R?. The extension ¢ of ¢ to R? is defined by

1 0w
Py,y2) =10 1 yo
0 0 1

Now let us compute the differential forms using formula (7).

General form Differential
¢+ zic3 c3dzy
0-forms c2 + x2C3 c3dzo
C3 0
cl,ldml + 0172d.732 + 3 (63,1d.’1,‘1 + Cg,zd.’L‘z) Cg)zd(l}l A dzxo
1-forms Czyldl‘l + 62y2d.’172 + .’L'Q(Cg’ld.'lfl + Cg,zd.’l,‘g) —C3’1dl'1 A d.’IZz
Cg,ld.’lll + C3,2d2122 0
cidxy ANdxg + x1c3dxy A dzo
2-forms cadxy Adzy + 2ocsdmy A dzy 0
c3dzy Adzo

For the cohomology spaces we find

H)(Z*,R®) = R?, H,(Z’,R%)=R® H(Z*R®)=R.

3. Cohomology of 7-groups with general coeflicients

As suggested before, the unipotent module structures are in a sense the essen-
tial ones when considering cohomology of 7-groups. In this section we show
that the cohomology of a T-group with coefficients in a vector space with any
module structure reduces to the cohomology of this group with coefficients in
the maximal unipotent part of this module. Using this reduction, the coho-
mology description of the preceding section also applies to cohomology with
non-unipotent coefficients.

Let N be any group. First of all, we show that each finite-dimensional N-
module contains a maximal unipotent submodule. Although this proposition is
well-known and quite easy, we present it here with a complete proof, to illustrate
the fact that the determination of this maximal unipotent submodule uses an
easy algorithm. A fairly standard argument then shows how, for any T-group,
cohomology with coefficients in R¥ reduces to cohomology with coefficients in
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the maximal unipotent submodule of R*. As an example, we compute the
cohomology of the free 2-step nilpotent group on 4 generators with coefficients
in a 4-dimensional real vector space.

PROPOSITION 3.1: Let N be a group acting on R* via p: N — GL(k,R). Then
R* has a N-invariant subspace M such that

(1) the action of N on M is unipotent, and

(2) the induced action on R¥ /M has no non-trivial fixed points.

Proof: We prove this proposition by induction on k. If & = 1, then either
@ is trivial, and M = R, or ¢ isn’t, but then the N-action has no non-trivial
fixed points, and M = 0. Now suppose we know how to find such a maximal
unipotent submodule in any N-module with a real vector space structure of
dimension smaller than k, and consider an N-module of dimension k. If the N-
action has no non-trivial fixed points, then M = 0. Otherwise, let v # 0 € R¥
be a fixed point. Then the subspace vct{v} spanned by v is an N-submodule,
and by induction there exists a submodule M of the quotient space R¥/ vet{v},
equipped with the induced module structure, such that the action of N on M
is unipotent and the induced action on R¥~!/M has no non-trivial fixed points.
Now M = {w € R¥| w+vet{v} € M} is a N-submodule with unipotent module
structure, and the induced action on R¥ /M = R*¥~1/Af has no non-trivial fixed

points. |

THEOREM 3.2: Let N be a T-group acting on RF via a morphism ¢: N —
GL(k,R). Suppose M is the maximal unipotent submodule of R*, with an
N-action given by py: N — GL(M). Then

* kN ~ pr*
H3(N,R¥) = H? (N, M).

Proof: When taking cohomology with respect to the short exact sequence

0 M R¥ R¥/M —0
we obtain the long exact sequence
.-+ > HP~1(N,RF/M) > HP(N,M) > H?(N,RF) > HP(N,R*/M) > - --.

But by lemma 1.1 in [9], H?(N,R*/M) = 0 for all p, because N acts on R*/M
without non-trivial fixed points. Therefore,

k nJ
HE(N,R*) & HE (N, M)
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for any 0 <p < n. |

To describe the cohomology spaces of a T-group with coefficients in a finite-
dimensional real vector space equipped with any module structure, we just com-
pute the maximal unipotent submodule and draw up the complex of invariant
tuples of polynomial differential forms, as in section 2.

Example 3.1: Let Fy 4 be the free 4-generated 2-step nilpotent group
Fy4 = (e1,e2,€3,€4, €5, €6, €7, €8, €9, €10 |[€1, €2] = €5, [€1, €3] = €5,
[e1,e4] = e7,[ea, €3] = e,
e2, e4] = eg, [e3, €4] = €10, )-
Then F3 4 has a polynomial crystallographic action p: Fy 4 — P(R!?) given by

T+ Uy
T2+ ug
T3 + ug
z1 T4+ Ug
. T5 + Us + U
plet )| =
: Tg + Ug + T U3
Z10 X7+ ur + T1uy
xg + ug + Taug
Xg + Ug + Touyg
Z10 + U0 + T3uq

Define a module structure @: Fy 4 — GL(4,R) by choosing

-1 2 0 -2 -3 0 4 0
oler) = 2 -1 0 2 o(es) = 2 1 -2 0

-2 2 1 =2’ -4 0 5 0})°

4 -4 0 5 6 0 -6 1

0 1 0 -1 3 0 -2 0
o(es) = 0 1 0 0 o(eq) = -1 1 1 0

-1 1 1 -1}’ 2 0 -1 0

2 -2 0 3 -3 0 3 1

Then the unipotent submodule has dimension 2, and the cohomology spaces
of the group F, 4 with coefficients in R* (or equivalently, in its unipotent sub-
module) are computed analogously to the methods described in Example 2.1.
For their dimensions we find

H%(FM,]R“) =~ R?, H‘},(FQA,RLi) >R HE(F4,RY) 2R,

H (F2’4,R4) o RIZZ’ H4 (F2,4,R4) o~ RZOI, ng(Fz,4,R4) oy R232,

H(g(FZA,R‘l) o RZOI, H?(F2’4,R4) o R122, HE(F2,4,R4) ov R46,

Hg(FzA,R“) =~ RIO, HEO(FM,R“) ~ R2.
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4. Cohomology of virtually nilpotent groups

In this section we put to work the description we gave of the cohomology of a
T-group with coefficients in R¥, and show how these techniques can be extended
to compute the cohomology of a finite extension of a 7-group. It is well known
(see, for instance, {13]) that any finitely generated virtually nilpotent group has
a T-subgroup of finite index.

As a first step, we sketch the connection between the cohomology of a group
and of a subgroup of finite index, under rather mild conditions on the coefficient
module.

PROPOSITION 4.1: Let E be a group and N a finite index subgroup of E.
Suppose A is an E-module uniquely divisible by the index of N in E. Then

H*(E,A) = H*(N,A)F/N,

where the E/N-action on H*(N, A) is induced by conjugation in E.

For a completely worked-out proof of this proposition we refer to [7].

We now use this relation to give a description of the cohomology spaces of
a virtually nilpotent group. Let E be a finitely generated virtually nilpotent
group, N a T-subgroup of finite index, and suppose : E — GL(k,R) gives
RF an E-module structure. According to the above proposition, we need to
understand the action of the finite quotient E/N (or, equivalently, of F itself)
on the cohomology of N. Of course, this cohomology we would like to compute
as the cohomology of the complex

Q5 (R™, R¥)PIN) ()

of invariant k-tuples of polynomial forms on R”, where p: N — P(R") is a
polynomial crystallographic action of N on R™. To do this we first of all need to
restrict to the maximal unipotent N-submodule M of R¥. The fact that M is
also an E-submodule, thus ensuring that the E/N-action on the cohomology of
N with coefficients in R¥ carries over to the cohomology of N with coefficients
in M, is ensured by

LEMMA 4.2 (with notation as above): The maximal unipotent N-submodule
M of R* is an E-submodule.

Proof: The proof of Proposition 3.1 shows the iterative build-up of M,

0cMY cMDc...c MDD = M,
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where M®) /MG=1) is the space of fixed points under the induced action of N
on R¥/M(G~1)_ We show M is an E-module by induction on r.

If r = 1 then M is just the space of fixpoints under the action of N, so, for
anyec E,ve M andn € N,

n(ev) — e(e_l'ne)v — €y

as N is normal in E. Therefore v is again fixed under the action of N.
Now suppose M("~1) is an E-module. Then R¥/M{"—1 is, and analogously
to the case r = 1 we can show that M /M=) is an E-module, thus M is
as well. n

To translate the E-action on cohomology to an action of F on this partic-
ular complex of tuples of forms, we first of all need to extend the polynomial
crystallographic action p of N on R™ to an action of E on R". According to
[7,Prop. 4.2], such an extension g: E — P(R") always exists, and is uniquely de-
termined. We then translate the action induced by conjugation inside F, which
is canonically defined on any projective resolution of Z as a trivial N-module
with an E-module structure (see, for instance, [2]), to an action on the complex
of (p(N),p(N)-invariant. The result of this translation, which is conducted
along the lines of the translation of this same action in the case £ = 1 and
@(N)={1} in [7], is given in

PROPOSITION 4.3 (with notation as above): Let
w="(wr ... wg)€ Qp(R",RF)PNeW),
The action of an e € E on w is given by

ple 1) wr

ple™ ) wk
Computing the cohomology of a virtually nilpotent group E now comes down

to computing the invariants in the cohomology of a normal 7-subgroup of finite
index under the action described in the above proposition.

THEOREM 4.4: Let F be a finitely generated virtually nilpotent group with a
polynomial crystallographic action p: E — P(R"™), and N a normal T -subgroup
of finite index. Let R* be an E-module via p: E — GL(k,R) and M its maximal
unipotent N-submodule with N-action given by ¢y: N — T'ry(k,R). Then

HA(E,RF) = H*[(Qp(R, M)PE)pu(E)y]
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In this theorem the E/N-action is pulled into the cohomology functor, thus
computing invariants before taking cohomology. This is indeed just a concise
form for the space of the invariants in the cohomology of N under the action of
the finite group E//N, as stated in

LeEmMMA 4.5: Let F' be a finite group acting on a vector space V over a field
that is uniquely divisible by the order of F. If W is an F-invariant subspace of
V, then

VF [we = (V/w)"

The proof of this lemma, which consists of an easy cohomological argument,
can be found in [7].

Example 4.1 (Example 3.1 continued): Consider any extension (e.g. the semi-
direct product)

1 F2,4 E Zo ® Ly —>1

of the free 4-generated 2-step nilpotent group F 4 by the group
Zy® Ly = (f1, fol fifoa=fofi, T = f3=1),
where the conjugation action inside F is determined by
fier =exf1, fiez=erf1, fies=esf1, fiea=esfr

and

foe1 =eifa, foea =exfi, faez=esfs, foeqa =e3fa.

Define a module structure ¢: E — R* by

-1 2 0 -2 3 -2 0 2
oen=|2% 3 1 5] ee=| 50T
2 2 1 -2’ 2 21 2|
4 -4 0 5 —4 4 0 -3
10 4 2 5 00 2
01 -2 -1 210 -1
ples)=|g g 5 o | wld=| 4 o1 o
00 -6 —2 6 0 0 -2
5 2 0 2 30 -4 -4
4 -1 0 -2 2 1 2 2
(P(fl): 4 9 1 2 ) ‘p(f2)"‘ 4 0 -3 —4
-8 —4 0 -3 6 0 6 7
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Using the computations from Example 3.1 we work out the cohomology of E
with coefficients in R?. The dimensions of the cohomology spaces are given by
HOY(E,RY) =0, HY(E,R%) =0, H%(E,R*) = R4,

HS(E, R4) o RIO’ H4(E, R4) [aY R16’ HS(E,R4) o RIQ’
HS(E,R*) ~R*, H'(E,R*)>R', HE,R*) =RS,

H%E,RY) ~R% HY(E,R*)~R.

5. Cohomology of virtually abelian groups

Let E be a finite extension of the free abelian group Z" on n generators. In this
section we give an explicit formula for the dimension of the cohomology spaces
of E with coefficients in a finite-dimensional real vector space R* carrying a
particular type of E-module structure. This formula generalises the formula
for the Betti numbers of a virtually abelian group as developed in [7] to more
general coefficient modules.

Let us first of all describe a polynomial crystallographic action of E on R™.
The extension

0 VAL E F=E/L" —0

determines an action ¢: F — GL(k,Z) of F on Z™ by conjugation inside E. Let
m: F' x F — Z" be the cocycle corresponding to the extension. Considered as
a mapping from F x F to R™, m is a cocycle as well. But H?(F,R") is trivial
for F is finite and R™ is uniquely divisible by the index of F, so m is actually a
coboundary. Let A: F' — R"™ be a mapping such that A = m, that is,

SAN(S, F1) = ME) + (M) = M f') = m(f, f')
for all f,f' € F.

THEOREM 5.1 (with notation as introduced above): The mapping p: E =
Z™ X, F — Aff(n,R) given by

¥(f) 2+ A(f)

0 ... 0] 1

p(z, f) =

is an affine crystallographic action.

For a proof of this theorem we refer to [7].
We need some extra concepts and definitions to state a formula for the dimen-
sion of H*(E,R¥). Let n,p € Nand p < n # 0. Then S(p,n —p) is the set of all
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(p,n — p)-shuffles, where a (p,n — p)-shuffle is a permutation ¢ of {1,2,...,n}
with

oc(l)<o(2)<---<o(p) and o(p+1)<olp+2)<---<a(n).

Now let R be any commutative ring and A = (a;;) € R™™" a square n-
dimensional matrix over R. Then, for every couple of (p,n — p)-shuffles (o, 7),

we set,
Ao(1)r(1) Qo()7(2) -+ Lo()7(p)
Qo (2)r(1 Ao (2)7(2 cae o Qy(2
A(a,-r) = det o ‘)T( ) o ')T( ) a( ')T(P)
A(p)r(1) Qo(p)7(2) - Qo(p)7(p)

Listing all (p, n — p)-shuffles as

. n
01,09,...,0, withe= ( >,
p

we define
A(U1,0‘1) A(01,02) A(Gl,oc)
A® — (02,01) A(U2y02) A(02,0c)
A.or) Aweos) - Aleod)

PROPOSITION 5.2: Let E be a finitely generated virtually abelian group with
a rank n abelian normal subgroup of finite index. Suppose the conjugation
action of F = E/Z" on Z™ is given by ¢: F — GL(n,Z), and the module
structure p: E — GL(k,R) is such that ¢(Z™) = {1}. Let F be generated by
a1,as,...,a,. Then the dimension of HP(E, Rk) is given by

ola)) 1@ H® ... plar)ed(arH)®

k(:)—Rank ; : ~L...,
ela)k1¥(@r)® ... w(ar)kxd(er’)®
elar) 1,19 )P . (ar)xp(a; )P

: : -1
olar)k1¥(a;)® . (e )kst(e; )P

The matrix of which we take the rank in this proposition is obtained by juxta-
position of the matrices in the formula; the matrix I is the identity matrix of
appropriate dimension. The proof of this proposition uses the lemma below.
Proof of the lemma is left to the reader.
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LEMMA 5.3 (with notation as above): Let o € S(p,n — p) and write dz, for
dxa(l) JAREENAN d.'l?a(p). Then

pe)(dze) = Y lole ™)l mdes

T€S(p,n—p)

for any e € E. Consequently, for any differential p-form

W= Z wedzy

Ues(pvn—p)

on R™ and any e € E we have

pere= ¥ da| S Gropl@lplellon]
T€S(pn—p) c€S(p,n—p)
Proof of Proposition 5.2: Let us take the affine crystallographic action p: £ —
Aff(n,R) from Theorem 5.1. Then p maps Z" to translations of R™. As ¢ is
trivial on Z"™, any Z"-invariant k-tuple of polynomial p-forms w = *(w; ...wg)
consists of k£ constant p-forms

wip = Z c((,i) dz,
o€S(p,n—p)
on R™.

We now determine the F-invariant k-tuples of forms. Clearly, an w that is
invariant under the action of a set of generators {a;,as, ..., a,} for F is invariant
under the action of any element of F'. Let us have a look at the action of an a;.
Choose an @; € E such that a;/N = a;. Then

p(a; ") wr

(8 “w = p(a;) - :
p(a; ") wi

and, for any j € {1,...,k}, we know from Lemma 5.3 that

p(&i—l)*wi = Z dmr[ Z cz(yi)d](ai—l)(a',r)

TES(p,n—p) g€S(p,n—p)

Cry

~(dzx, ... dm,n)_ -1y(p) .
(4 CIRICRA

i®)

Inserting this result in (8) and subtracting w again yields the desired result.

L]
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